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In this paper, we analyze the steady-state condensation process of a saturated vapor in 
contact wi th  one side of a vertical thin plate, caused by an uniform cooling rate on the 
other surface of the plate. The effects of both longitudinal and transverse heat conduction 
in the plate are considered. The momentum and energy balance equations are reduced to a 
system of three differential equations wi th four parameters: the Prandtl (Pr) and Jakob (Ja) 
numbers, a nondimensional plate thermal conductivity (~, and the aspect ratio of the plate 
e. To obtain the evolution of the condensed layer thickness and the related temperature of 
the plate as a function of the longitudinal coordinate position, the coupled balance 
equations are integrated in the asymptotic l imit Ja -* 0, including the cases of very good 
and poor conducting plates. The results obtained indicate that the effect of the longitudinal 
heat conduction through the plate on the condensed layer thickness changes from a profile 
x 1/4 for a good conducting plate to x 1/3 for a poor conducting plate. 
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Introduction 

Since the classical work of Nusselt (1916), the theoretical studies 
of laminar film condensation have received considerable atten- 
tion in the literature. In general, development in this area has 
concentrated on those investigations in which the relative impor- 
tance of additional complicating factors is revealed. In this sense, 
the natural convection condensation process on vertical plates is 
not an exceptional case, and relevant analyses including inertia, 
convection, and shear stress effects at the condensate surface, 
show that the simple Nusselt results are surprisingly accurate 
over a wide range of conditions. A particular contribution on this 
issue comes from Rohsenow (1956), wherein he modified Nus- 
selt's analysis including the energy convection in the heat bal- 
ance equation. However, his analysis did not include the inertial 
forces as was done by Bromley (1952), using other alternative 
procedure. 

In an effort to obtain a better approximation, Sparrow and 
Gregg (1959), introducing a boundary-layer treatment and simi- 
larity transformation of the governing equations, showed numeri- 
cally that the inertial effects on heat transfer are not important if 
the Prandtl number is larger or equal to 10 and was quite small 
for even a Prandtl number of order unity. Later, Chen (1961), 
solved integral forms of the boundary-layer equations by pertur- 
bation methods, including the retarding effect of vapor shear 
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stress on the condensate film. A comparison of the results 
obtained by Sparrow and Gregg with those obtained by Chen 
shows that the influence of surface shear stress is negligible at 
higher Prandtl numbers. To show the influence of this effect 
more accurately, Koh et al. (1961) incorporated the interfacial 
shear stress by using the simultaneous solution of the vapor and 
condensate boundary-layer equations and concluded that the 
effect of the shear stress is significant only when the condensa- 
tion rate is sufficiently high. Similar results were obtained by 
Rose (1988), using a similarity approach confirming the previous 
problem solved by Chen and gave even more accurate expres- 
sions for the Nusselt number. The state-of-the-art of the laminar 
film condensation on vertical plates and other condensing pro- 
cesses was reported in Merte (1973), and more recently in Rose 
(1988) and Tanasawa (1991). 

The foregoing studies particularly address isothermal vertical 
plates with known temperature. However, theoretical studies of 
film condensation processes with nonisothermal conditions had 
received little attention in the literature. Patankar and Sparrow 
(1979) solved the problem of condensation on an extended sur- 
face by considering the heat conduction in a fin coupled with the 
condensation process. Their numerical solution of the governing 
equations confirms the physical influence of a nonisothermal 
extended surface over the condensing process. Subsequently, it 
was shown by Wilkins (1980) that an explicit analytical solution is 
possible for the formulation of Patankar and Sparrow. The main 
conclusion of the article is that the studies of condensation on 
extended surfaces form a class by themselves, and an estimation 
of the surface area requirements of the condenser, using the 
classical Nusselt analysis for an isothermal case, is inappropriate. 
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To extend these particular cases with nonisothermal conditions, 
Brouwers (1989) performed an analysis of the condensation of a 
pure saturated vapor on a cooled channel plate, including the 
interaction between the cooling liquid, the condensate, and the 
vapor. His results confirm that this interaction must be taken 
into account in order to have a more realistic model in this type 
of processes. 

The main objective of this paper is to analyze, using asymp- 
totic as well numerical methods, the laminar film condensation 
process over a nonisothermal vertical flat plate with finite thick- 
ness and thermal conductivity. The wall energy governing equa- 
tion is coupled with the condensing process at one vertical face 
of the flat plate, while the flat plate is cooled with a known 
constant external flux qe at the other vertical face. 

Order-of-magnitude estimates 

The physical model under study is shown in Figure 1. A thin 
vertical plate of length L and thickness h is placed to the right in 
a stagnant atmosphere filled with saturated vapor with a temper- 
ature T s. Its upper right corner coincides with the origin of a 
Cartesian coordinate system whose y-axis points in the direction 
normal to the plate, and its x-axis points down in the plate's 
longitudinal direction; that is, in the direction of gravity. A 
known heat flux per unit length, qe is taken away from the other 
side of the plate. For simplicity, we assume throughout the paper 
that both edges of the plate are adiabatic. A thin condensed 
laminar layer develops with increasing thickness downstream 
falling by gravity. The density of the condensed fluid, Pt is 
assumed to be constant and much larger than the vapor density. 
An order-of-magnitude analysis shows that the condensed fluid 
longitudinal velocity is of the order u c ~ ( g / v l ) ~ 2 ( x )  ~ x /gLJa ,  
where ~ is the condensed layer thickness, g is the gravity 
acceleration, v t corresponds to the kinematic coefficient of vis- 
cosity (=  ix l /pt ) ,  and Ja corresponds to the appropriate Jakob 
number, representing the ratio of the sensible heat energy ab- 
sorbed by the liquid to the latent heat of the liquid during 
condensation, defined by 

1 ) 4/3 
3qeL~  

J a =  ~ 

Plhfgg~V ~ 
(1) 

qe 

Ih 

Li 
Saturated vapor 

Ts 

Figure 1 Schematic diagram of the studied physical model 

Here hfg corresponds to the latent heat of condensation. This 
definition of the Jakob number is derived from the classical 
form, using the known heat flux instead of the temperature 
variation in the condensed film. The condensed mass flow rate is 
then of the order of rh ~ (plg/vl)g33(x).  The production rate of 
condensed fluid can be obtained from the thermal energy rela- 
tionship at the condensed vapor interface as d r h / d x  ~ q e / h l r .  

From all these relationships, we observe that the thickness of the 
condensed layer related to the length of the plate is 

--L ~ - -  with Y = 7 -  (2) 

Notation 

c t specific heat of the condensed phase 
g gravity acceleration 
h thickness of the plate 
Ja Jacob number defined in Equation 1 
L length of the plate 
m mass flow rate of condensed fluid 
Nu Nusselt number defined in Equation 7 
Pr Prandtl number 
qe prescribed heat flux 
s nondimensional stream function defined in Equation 9 
s i value of g evaluated at ~ = 1 
T temperature 
T~ temperature of the saturated vapor 
T r characteristic temperature, T r = t a q e h / ( e 2 h w )  
u, v nondimensional longitudinal and transversal velocities 
u c characteristic longitudinal velocity of the condensed 

fluid 
x y  Cartesian coordinates 
z nondimensional transversal coordinate in the plate 

Greek  

tx heat conduction parameter defined in Equation 5 
nondimensional parameter defined in Equation 2 

A nondimensional thickness of the condensed layer 
thickness of the condensed layer 
nondimensional inner coordinate defined in Equation 
49 

h i thermal conductivity of the condensed phase 
k w plate thermal conductivity 
ix I dynamic viscosity 
v t kinematic coefficient of viscosity 

nondimensional inner coordinate defined in Equation 
57 

Pt fluid density 
tr nondimensional normalized transversal coordinate 
4) nondimensional function introduced in Equation 31 

nondimensional inner variable defined in Equation 57 
× nondimensional longitudinal coordinate defined in 

Equation 8 
nondimensional inner variable defined in Equation 49 
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where y is an unnamed nondimensional parameter (Incropera 
and DeWitt 1990). Because of the adiabatic edges of the plate, 
the global heat convected from the saturated vapor to the plate 
must be the same as the heat diffused from one lateral surface to 
the other in the plate, that is 

M, aTw x,aL 
( 3 )  qe h b 

where h~ and k~ are the thermal conductivity of the condensed 
fluid and the plate, respectively. AT w and AT t are the character- 
istic temperature changes in the transveral direction, for the 
plate and the condensed fluid, respectively. The total tempera- 
ture change is then A T ~  AT l + ATe. Using Eqautions 3, to- 
gether with 2, we obtain the relative temperature drop on the 
plate 

aT~ 1 
c~ (4) 

AT 1 + - -  
E 2 

where c~ is the heat conduction parameter defined by 

(5) 

and ~ is the aspect of the plate e = h / L  << 1. Parameter a 
corresponds to the ratio of heat conducted longitudinally by the 
plate to the heat convected from the saturated vapor. For a /82  
>> 1, the transversal temperature variations in the plate com- 
pared with the overall temperature drop AT are very small, of 
order e 2 / a  at most. This represents the thermally thin wall limit. 
On the other hand, for values of a / e  2 of order unity, the 
transversal temperature drop in the solid is of the order of 
magnitude than the overall temperature drop. This represents 
the thermally thick wall limit. The global temperature change is 
then of the order 

qe"( 0) 
aT~ 1+7 (6) 

From Equation 3 we can define a Nusselt number of order 
unity as 

qe h 
Nu = - - ~  1 (7) 

In this paper, we study the case of Ja << 1, which is a good 
approximation for most of practical cases in condensation (In- 
cropera and DeWitt 1990). Typical values of ~/ is ~ ~ 101°. The 
condensed layer thickness is typically ~ ~  10 -3 L, thus the 
boundary layer approximation is fully justified. The ratio of the 
thermal conductivities k w / h  ! can reach values of 103. Therefore, 
a typical value of c~ is a ~ h / L  and ot / /~ .  2 ~ L / h .  In the follow- 
ing section, we deduce the governing equations. The thermally 
thin approximation is then applied, and the asymptotic limits 
c~ >> 1 and c~ << 1 are studied. The asymptotic limit cL >> 1 is 
important for this problem, because we can obtain a closed-form 
solution for the condensed layer thickness evolution, which gives 
accurate results for values of oL of order unity. In Appendix B we 
analyze the case of a thermally thick wall. 
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Formulation 

We introduce the following nondimensional variables 

Ts - T,~ T ~ - T  x y y 
0w ,o (s) 

. . . .  A S - - ; v  = 
A L ~,Ja} , u =  1/gLJ a O'q Ja~ g ~  OX 

(9) 

where T~ represents the characteristic global temperature change 
dictated by Equation 6 and is given by 

eL qe h 

T, E2 Xw 

and ~ represent the longitudinal and transversal velocity com- 
ponents in physical units, s is the nondimensional stream func- 
tion, and A(×) represents the unknown nondimensional thick- 
ness of the condensed layer to be obtained as part of the solution 
of the problem. The energy equation for the plate is given by the 
nondimensional Laplace equation 

a20w 1 a20w 
- -  ~ - -  = 0 ( 1 0 )  
OX 2 E 2 0Z 2 

The adiabatic boundary conditions at both edges are 

OOw 
= 0, for X = 0 and 1 (11) 

3× 

The other two boundary conditions are obtained from equating 
the heat fluxes at both faces of the plate and assuming continuity 
for the temperature at the solid-condensed fluid interface 

00~ e 2 00[ d0~ e 2 

I (12) 

and 

0w(X, z = O) = 0(x, cr = O) (13) 

For the condensed phase, the nondimensional governing 
equations are 

03S 
- -  + 1 
Oct 3 

= jaA4 f Os 02s Os 02s 

&r  OXOfr O X &r 2 G 

(14) 

020  = JaPrA4 / Os a0 as O0 3 dh  00 
0~ 2 ~a~OX aX0cr A ~ x s - ~ f  (15) 
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where Pr corresponds to the Prandtl number given by Pr = 
pqct/h I. The corresponding boundary conditions now take the 
form 

OS o=0 O(x,~r=O)=Ow(x,O);s(x,0-=O)=O;-~-~0- = 0  (16) 

0,2S o= 1 0(X,0- = 1) = 0; - = 0  
0,0-2 

(17) 

together with A(× = 0) = 0. The energy balance at the condensed 
vapor interface is provided by the following relationship 

d( A3si(x)) O0 
3A dx 00- o'= 1 (18) 

where s i is the value of s evaluated at the condensed-vapor 
interface, tr = 1. The second condition of Equation 17 arises 
from the balance of tangential shear stress at the interface (Koh 
et al. 1961). 

The system of Equations 14 to 18, together with the Laplace 
Equation 10 and the corresponding boundary conditions contains 
four differential equations with four unknowns, s(×, 0-), 0(×, 0-), 
A(X), and 0w( x, z) with four different nondimensional parame- 
ters, Ja, Pr a ,  and e. In the following sections, we analyze the 
realistic case Ja--* 0, with Prandtl number such as Pr << Ja -~ . 
For small values of Ja, the convective terms for the condensed 
fluid momentum 14 can be neglected, giving 

=1 
s(0-) = 10-2(1 - 3 )  °rs' 3 (19) 

Thermally thin wall regime (oL/e 2 >> 1) 

For  the impor tant  case of  a thermal ly  thin wal l  (oL/e 2 >> 1), the 
temperature variations in the transversal direction of the plate 
can be neglected as shown in the order of magnitude section. 
The energy balance Equation 10 can be integrated in the 
transversal direction and after applying the boundary conditions 
at both lateral surfaces, we obtain 

d20w 1 0,0 

~-~x~ + S O-gl,,=o = - 1  
(20) 

to be solved with the adiabatic conditions at both edges. 

Prand t l  n u m b e r  << da - 1 

In this limit, the governing Equations 15, 18, and 20 can be 
solved using the following perturbation expansions 

0 = 00(X, 0-) + JaPr01(X, o') + O(Ja) + O(JaPr) 2 (21) 

A = Ao(X) + JaPrAl(X) + O(Ja) + O(JaPr) 2 (22) 

0w = 0w0(X) + JaPr0~a(X) + O(Ja) + O(JaPr) 2 (23) 

Up to terms of order JaPr, the resulting equations for the 
nondimensional condensed layer thickness take the form 

3 d(A 4) 0,00 

4 dx 00- ,,=1 
(24) 

d(~l)__ 0,01 I 
3 dx 0,0- ~=1 

(25) 

where the solution for 00 and 01 have to be to be found from the 
equations 

0,200 
= 0 (26) 

00 -2 

0,201 __A4[ 0,S 0,0(i 3 dAosaO o / 
aO "2 ~ 0,ff O× AO dx ~ J 

(27) 

with the boundary and initial conditions 

%(×,0)  = 0w0(x) and A0(0) = 0  

Ol(×,O) = Owl(x) and AI(O) = 0 

The solution for 00 is represented by a linear profile 

00(X,0-) = 0w0(1 - 0-) (28) 

The corresponding energy equations for the plate are up to 
the first order 

d20w0 0w0 
a - 1 (29) 

dx 2 A 0 

t~ - -  d20wldx 2 A~ IA1 0,0°0,0- ~=0 + ~ 1  --0,01&r ~=0 = 0 (30) 

to be solved with adiabatic boundary conditions dOwn/dX)×=o, t 
= 0. The leading order system of Equations 24 and 29 can be 
reduced to a single differential equation, which gives the evolu- 
tion of the condensed layer thickness as a function of the 
longitudinal coordinate 

d3+ 1 d+ 4 
a (31) 

dx 3 +¼ d× 3 

where qb = A n and 0w0 = (3/4)dtb/dx. This nonlinear equation 
contains only the parameter a. This equation must be solved 
numerically (see Appendix A) or using perturbation techniques 
for large and small values of the parameter a ,  as shown below. 

Solution for ot ~ ~. This is a regular limit. For very large 
values of the parameter a ,  the leading term nondimensional 
temperature of the plate d + / d ×  changes very little (of order of 
c~ -1) in the longitudinal direction, as shown in the order of 
magnitude section. Assuming a solution of the form 

+ ( x )  = + 0 ( x )  + ~ ,  ~ - J % ( x )  
j=l 

(32) 
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and introducing this relationship into Equation 31, we obtain 
after collecting terms of the same power of a -J ,  the following 
sets of equations 

d3~o 

dx 3 
- - =  0 (33) 

d3qbl 1 ddOo 4 
i 

dx 3 qbg 0X 3 
(34) 

d3~b2 1 dqb 1 1 dO1 d~bo 

d× 3 dOo O× 4 dO~ O× 
(35) 

etc., with the following initial and boundary conditions 

(hi(O) = O; d2d)---~idx z x = 0,1 = O, for all i (36) 

Solving Equations 33 and 36 gives ~b 0 = CoX. Integrating Equa- 
tion 34 in the form 

f0 1[ld× 

and considering the adiabatic conditions at both edges of the 
plate, we obtain 

4 3 
0 = -~ ~,( Cg - 1 ] (37) ] 

that is C O = 1. Introducing the solution for ~b 0 into Equation 34 
and integrating three times, we obtain after applying the appro- 
priate initial and boundary conditions 

64 i~ 
+1 = C1x  -- 2 ×  3 -I- - ' 2~  X T (38)  

where C~ is an integration constant related to the temperature of 
the plate at the leading edge and must be determined by solving 
the next higher-order equation. Integrating of Equation 36 in the 
form 

f0 1[ldx 

and considering the adiabatic boundaries at both edges of the 
plate, we obtain C a = -114/2079 .  Up to the first order in a - l ,  
the condensed layer thickness is then given by 

Ao = X¼(I + ~.~ (C1 + 6 4 7  2---~"~" x -- 2 × 2 ) )  + O ( ~ - 2 )  (39) 

the nondimensional plate temperature is 

3[ '647 
Owo = "~ 1 + C 1 + -2-i- × - X 2 + 0 ( 0 -  - 2  ) (40) 

and the Nusselt number is then 

3 [ 1 (  160 ¼ 11 2]]  
N u o =  4X--~- - I +  C 1 × 3 +  2---~-× - ' i ~  × ] ] + O ( o L  - 2 )  (41) 

Heat conduction effects on condensation. F. M~ndez and C. Trewho 

The first terms on the right-hand side of the above equations 
represent the classical Nusselt solution (Nusselt 1916) for an 
isothermal plate. Therefore, for very large values of the parame- 
ter a ,  the leading order solution is 

3 3 
00 = ,~q-(1 + ~r), A 0 = ×¼,0~0 = ~- (42) 

Substituting these relationships into the energy equation for the 
condensed phase (27), it transforms to 

0 09( ) 
act 2 32 ~r2-  

(43) 

The solution to this equation together with the boundary 
conditions is readily obtained as 

3 3 
01 = 0wl(1 -- II) + "~ '~ (O "4 -- O') -- 6---~(O "5 -- O') (44) 

Similarly, the solution for the first-order correction of the nondi- 
mensional plate temperature and thickness of the condensed 
layer are 

51 444 ! 
0,.1 =3-3-~;  A1 9600 x" (45) 

Finally, the global solution up to terms of order a -  1 or JaPr, 
is then given by 

,( ,(  64 
A = X ~ 1 + ~ 2079 + 23l 

+ 0(0/. -2 ,Ja, Ja2Pr 2) (46) 

3 (  1 (  114 
0 w = -  ~ 1 + ~  - 2 0 7 9  

16 ¼_ 2 2] _ 204 
+ 9 - ~ J a P r )  

+ O(c~ -z , Ja , j a2pr  2) (47) 

N u =  , l + ~ - ~ - 2 - - ~ X  + 2 - ~ ×  -~-~X ) +  JaPr 
4X~ 

+ O(c~ -2 , Ja , j a2pr  2) (48) 

Solu t ion  for  a ~ 0 .  For small values of a compared with 
unity, the longitudinal heat conduction can be neglected. How- 
ever, this is a singular limit due to appearance of two layers close 
to both edges in order to satisfy the adiabatic conditions. Close 
to the leading edge there is a boundary layer of thickness of the 
order of × ~ a~. Outside this inner zone, longitudinal heat 
conduction through the plate is negligible, obtaining to the 
leading order d~ e ~ X ~- Introducing the following inner variables 

1 4 

3 g 9 
(49) 
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the evolution Equation 31 for the condensed layer thickness 
transform to the parameter-free equation 

d 3 0  1 dt~ 

d~ 3 ¢¼ d~ 
1 (50) 

with the initial conditions given by 

0 ( 0 ) =  dg 2 g=o=O (51) 

Another condition is to be obtained after matching with the 
outer zone solution, 

4 

~(~ - ,  ~)  ~ /; (52) 

The general behavior of Equations 50 to 52 can be found in 
Appendix A. There is only one value for the initial slope which 
satisfy the matching condition for large values of ~ and is given 
by (see Appendix A) (d~/d~)  0 = 0.7944 . . . .  Close to the leading 
edge, the leading-order nondimensional thickness of the con- 
densed layer is given by 

7 

A0-(0.7944... )~ "o (53) 

changing the behavior at the end of the boundary layer as 

A 0 = X] (54) 

The nondimensional temperature at the leading edge of the 
plate decreases with a as a ~/5 and is then given by 

2 

o-.0 (55) 

The Nusselt number changes in this transition layer from 

I 

3(4~2,,.31 (0.7944...)z | a ~  
(56) Nu o = ,_ ×4 

at the beginning reaching asymptotically Nu --- 1 at the end. 
On the other hand, close to the trailing edge we have a thin 

transition layer of order (1 - ×) ~ V~-, where the temperature 
gradient goes to zero as × ~ 1. To study this layer, we first 
introduce the following inner variables 

9 d~b 
3 - - - -  

1 - x  4 d× 
= ~ ;  'P G -  (57) 

and obtain the following transformed linear equation 

d2qo 
d~ 2 -q~=  - ~  (58) 

with the conditions 

d~p 
-~- ~=0 = 0 and ~(~ -+ ~) ~ ~ (59) 

The first condition arises from the adiabaticity at the trailing 
edge of the plate, while the second one comes from matching 
with the outer solution (a = 0). The solution of Equations (58) 
and (59) is readily obtained and is given by 

~p = ~ + e x p ( - 6 )  (60) 

The nondimensional temperature of the plate close to the trail- 
ing edge for small values of a in terms of the outer variables is 
then given by 

, 4~'- [ ~ l - x )  
Ow o = ×7 ff--exp[ - (61) 

while the local Nusselt number can be written as 

4 - - - ~  
Nu 0 = 1 - exp (62) 

9X ~ 

Therefore, the leading term outer solution are given by 

0 o = X½(1 - or), A o = X½ and 0wo = X } (63) 

Substituting these relationships into the energy equation for the 
condensed phase 27, it transforms to 

0~ 2 =×7 ---3 + ~ 2 -  (64) 

The solution to this equation together with the boundary condi- 
tions is 

2[ 1 1 4 1 5 ~r)] 
01 0wl(1 ,~) + x ~ [ ~ ( , r  _ ~3) + _i~(, r _ ,r) - ~ ( , r  - 

d 

(65) 

Similarly, the solution for the first-order correction of the nondi- 
mensional plate temperature and thickness of the condensed 
layer are 

1 ~ 1 ~ 1 2  2 

0wl = - ~ X ~ ;  A 1 = -- 5 " ~ X  ~ -- I ~ X  ~ (66) 

The global solution for the case of c~--+ 0 is then given by 
(neglecting the influences of both layers close to the edges of the 
plate) 

1 A = x½ (1- ( ~--~ X ~ + -~ ×~ )JaPr) + O(Ja,Ja2Pr 2) (67) 

, ( 1  ) 
0w = ×7 1 + ×~JaPr + O(Ja, ja2pr  2) (68) 

N u = l + ~ 0 × ] ( l + l x ) J a P r + O ( J a , j a 2 p r  2) (69) 
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Results and conclusions 

For values of ~x of order unity, it is necessary to solve numeri- 
cally the governing Equation (31), with the respective boundary 
and initial conditions, for the thermally thin wall regime. The 
numerical scheme used here is described in Appendix A. Figure 
2 shows the evolution of nondimensional temperature at the 
plate as a function of X for different values of the parameter 
in the limit Ja --* 0 and Pr of order unity. There is good agree- 
ment between the asymptotic and the numerical solution even 
for value of c~ of order unity. As we can see, the nondimensional 
temperature of the plate decreases in the frontal regions of the 
plate and increases behind as the value of cx decreases. The 
leading term solution for cx --o ~ is the classical Nusselt solution, 
indicating clearly the influence of the parameter a on the 
process. Figure 3 shows the nondimensional condensed layer 
thickness as a function of X for different values of c~ for the 
same limit. At the trailing edge of the plate, the thickness as well 
the condensed mass flow rate are the same for all values of c~, 
for Prandtl numbers of order unity. This is because we pre- 
scribed the heat flux and assumed adiabatic edges of the plate as 
well as the heat flux in the condensed fluid is invariant in the 
transversal direction. This is not the case when the Prandtl 
number is large enough to consider the convective terms in the 
energy equation for the condensed phase. As the Prandtl number 
increases, both the thickness of the condensed layer as well as 
the mass flow rate decreases, as shown in the first-order correc- 
tions in Equations 46 and 67, for large and small values of a ,  
respectively. For large values of a ,  the condensed layer thickness 
varies like x ~/4,  while for small values, we obtained the behavior 
like x ~/3. The same behavior is obtained using both thermally 
thin and thick wall approximations (see Appendix B). For finite 
values of a ,  the behavior changes from x 1/4 close to the leading 
edge to x ~/3 towards the trailing edge. Finally, Figure 4 shows 
the Nusselt number as a function of X for different values of a.  
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Figure 3 Nondimensional  condensed layer thickness as a 
funct ion of X for di f ferent values of 

In the limit of Pr of order unity and Ja --* 0, the average Nusselt 
number 

= f01Nu(x)d× = 1 (70) 

is always unity for the same reasons mentioned above. For 
nonzero values of a ,  the local Nusselt number shows a singular- 
ity as ×-o  0. As the value of a decreases, the local Nusselt 
number decreases faster in × to values close to unity, showing 
the appearance of a boundary layer close to the leading edge. 
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By way of illustration, we did some calculations using copper 
and stainless steel for the condensation process of saturated 
water at atmospheric pressures. We used the following parame- 
ters: qe = 100KW/m2, L = lm  and a Prandtl number for the 
condensed film of Pr = 2.3538. The resulting Jakob number is for 
this case, Ja = 0.06193. Table 1 gives the resulting values of Ja, 
a ,  ot/e 2, for different values of h. As we can see, the values of c~ 
in all cases are very small compared with unity. However, for 
copper material, the values of a / e  2 are very large compared 
with unity (thermally thin wall), and the appropriate formulas to 
be used are given by Equations 67 to 69. Otherwise, for stainless 
steel, the appropriate regime is the thermally thick wall, where 
the equivalent formulas are given by Equation A8 in the Ap- 
pendix B. In both cases, the temperature in physical units at 
z = - 1  are given by 

Tw=Ts-x1/3( l+JaPr4/3--~-X )Lqe~ ( ~ ) 1 / 4  

= T  s - 20.77X1/3(1 + 0.00021X 4/3) (71) 

for the thermally thin wall regime with a - ,  0 and 

rw=Ts-(X1/3+~)gqe(~) =Ts-20"77(X 1 / 3 + ~ - )  

(72) 

for the thermally thick wall regime. In the former case, the 
temperature distribution at z = - 1 doesn't depend on the thick- 
ness of the plate. Otherwise, for the latter case, the e2/ct is a 
linear function of the plate thickness and therefore, the influence 
is stronger. 

In this paper, the condensation process of a saturated vapor 
in contact with one surface of a thin vertical plate has been 
analyzed for small values of the Jakob number, using asymptotic 
as well as numerical techniques. A uniform prescribed heat flux 
is assumed at the other vertical surface of the plate. The finite 
thermal conductivity of the plate material allows for transference 
of heat by conduction upstream through the plate, thus changing 
the mathematical character of the problem from parabolic to 
elliptic. Assuming the plate to have adiabatic leading (upper) and 
trailing (lower) edges, the heat convection through the lateral 
surface of the plate, affected by the axial heat conduction, 
governs the space evolution of the plate temperature, the con- 
densed layer thickness, and the overall condensed fluid mass flow 
rate. The two asymptotic limits of large and small values of the 
parameter a ,  defined by the ratio of the fluid thermal resistance 
to that of the plate, have been analyzed for this condensation 
process. For large values of the parameter c~, the plate tempera- 
ture varies little in the longitudinal direction, thus producing a 
singular behavior for the local Nusselt number close to the 
leading edge. The leading solution in this limit reproduces the 
classical results of Nusselt for constant plate temperature. As 
the value of tx decreases, the plate temperature comes closer to 
the temperature of the saturated vapor, reaching exactly this 
value for a = 0. Because we prescribe the external heat flux, the 

Table 1 Values of Ja, e t ,  Or//82 

Copper Sta in less  
pure a oL/e 2 steel a OL//~ 2 

h = . 0 1 m  .00105 10.5 h = . 0 1 m  2 .95x10  -5  .3952 
.005 .00052 21 .005 1 .97x10 - s  .7904 
.0025 .00026 41.98 .0025 9 . 8 8 x 1 0  - 6  1.581 

longitudinal heat conduction through the plate has a minor 
influence on the thickness of the condensed film. The influence 
is bigger for the temperature distribution and the local Nusselt 
number. For very small Jakob numbers and Prandtl numbers of 
order unity, the solution is insensitive to the Prandtl number. 
However, as the Prandtl number increases, the main effect is to 
reduce the condensed film mass flow rate and thus the thickness 
of this layer. In this case, the convective terms in the energy 
equation have to be considered, changing the average Nusselt 
number, even in this case with known overall heat flux. We used 
asymptotic techniques to obtain a closed form solution for the 
plate temperature, thickness of the condensed film, and the local 
Nusselt numbers. 
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Appendix A: Numerical solution of the evolution 
equation 

In this appendix, we show the procedure used to solve numeri- 
cally the evolution Equations 31. We transform the boundary 
value problem to a initial value problem by introducing the 
following variables 

8 I 

[ 4 ~  :~ 4 "3) e~sS (A1) 

The evolution equation now takes the parameter-free form 

d3Y 1 dY 

ds 3 y~ ds 
- - 1 ( A 2 )  

with the initial conditions 

d2y dY 
Y ( O )  = ~ s= o = O; -~s  ,=  o = C (A3) 

where C is any value within a specified range. The corresponding 
values for the trailing edge of the plate can be obtained as we get 

d2y] 
ds 2 s=sf = 0 (A4) 

Equation A2 is solved numerically suing a fourth-order 
Runge-Kutta  technique with an integration step As ~ sf/lO00. 
Once we obtain s f, we can compute et, and therefore the original 
variables ~b and × as 

i 4_ 

c~ = X = s f ; +  
(AS) 

Figure A1 shows the relationship of the initial slope (d¥/ds) o = 
C, with the value of eL. Thus, C must have values in the range 
0 < C < 0.7944... in order to achieve the adiabatic condition at 
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s for different values of the initial slope. For values of C slightly 
larger than the critical value of C = 0.7944 . . . .  we do not obtain 
the adiabatic condition at the trailing edge d 2 y / d s  2 = O. 

Appendix B: Thermally thick wall approximation 

For values of eL/e 2 of order unity, the nondimensional tempera- 
ture variations n the plate in the transversal direction are very 
strong and are of the same order of magnitude as the overall 
temperature difference T,. Therefore in this thermally thick wall 
regime, it is not justified to assume the plate temperature to be 
only a function of the longitudinal coordinate X, but it is also a 
function of the transversal coordinate z. However, for small 
values of e 2, the longitudinal heat conduction through the plate 
can be neglected, except in small regions close to both edges. 
Thus, the energy equation of the plate indicates a linear profile 
of the temperature in the z direction and a constant nondimen- 
sional temperature gradient 

a0,~ e2 s 2 a0 I 
(A7) 

Oz o: o~A Oct [~=l) 

the trailing edge. The nondimensional  plate temrperature  is in 
this case 

1 

0w = 4d---X-= d--~- (A6)  

Figure A2 shows the profiles for the d 2 y / d s  2, which is 
related to the temperature  gradient at the plate as a function of 

where we used the boundary conditions given by Equations 12 
and 13. For Prandtl numbers of order unity and Ja --, 0 Equation 
28 introduced in Equation A7 gives ~ ( X ) =  0,.(X, z = 0). Thus, 
using Equation 18, we obtain 

~2 

z~(x) = ×'~ and 0 w = X3 - - - z  (A8) 
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